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PARTIALLY INVARIANT SOLUTIONS

FOR A SUBMODEL OF RADIAL MOTIONS OF A GAS

UDC 533S. V. Khabirov

All partially invariant solutions in terms of the group of extensions for a model of radial motions of an
ideal gas are found. The solutions are obtained by the method of separation of variables in an equation
containing functions of one variable but different functions of different independent variables. The
solutions predict different continuous unsteady convergence or expansion of the gas under the action
of a piston with a point sink or source. If the sink or source affects all particles simultaneously, a
collapse or an explosion occurs.
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Introduction. The group analysis of equations of ideal gas dynamics yields a set of invariant submodels
[1, 2]. Studying partially invariant submodels involves significant difficulties in studying compatibility of overde-
termined systems [3, 4]. For invariant submodels of rank 2, partially invariant submodels of rank 1 and defect 1
reduce to one equation for functions of one variable, but these functions depend on different variables. Separation of
variables in this equation is a nontrivial problem, but it can be solved. Examples of such separation for a submodel
of radiation motions of a gas are given in the present paper.

1. Formulation of the Problem. The radially symmetric motions of the gas are defined by the equations

Ut + UUr + ρ−1pr = 0,

ρt + Uρr + ρ(Ur + νr−1U) = 0, (1.1)

St + USr = 0, p = f(ρ, S),

where U is the radial velocity, ρ is the density, S is the entropy, p is the pressure, p = f(ρ, S) is the equation of
state, and ν = 0, 1, or 2 is a parameter of plane, cylindrical, or spherical symmetry of motion, respectively.

Equations (1.1) admit extensions t ∂t +r ∂r [1]. With the use of the invariants s = rt−1, U , ρ, and S, one can
specify three different presentations of the partially invariant solution of rank 1 and defect 1. In these presentations,
one functions has to be of a general form and depend on t and r. This function is called the extra function [3]. The
remaining functions depend on the variable s. System (1.1) can be written for functions depending on one variable
(s or t) or on the sum of such variables. Hence, the problem of separation of variables arises.

2. Density as an Extra Function. We assume that the density ρ = ρ(t, s) is a function of the general
form, and the velocity U = U(s) and entropy S = S(s) are functions of one invariant variable s. Substituting the
presentation of the solution into system (1.1), we obtain

(U − s)S′ = 0, (U − s)U ′ + ρ−1(fρρs + fSS′) = 0,

tρt + (U − s)ρs = −ρ(U ′ + νs−1U).
(2.1)

For U = s, system (2.1) yields a solution ρ = t−ν−1ρ0μ(S), where S = S(s) is an arbitrary function and ρ =
g(p)μ(S) is the equation of state with separated density. Such an isentropic solution was studied in [5].
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The motion is isentropic (S = S0 for U �= s); Eqs. (2.1) have the integrals

U = ϕ′(s), (ϕ′)2/2 − sϕ′ + ϕ + i(ρ) = D(t), i =
∫

ρ−1fρ dρ; (2.2)

τ ′(i)
(
tD′ − (ϕ′ − s)2ϕ′′

)
+ ϕ′′ + νs−1ϕ′ = 0, ln ρ = τ(i). (2.3)

If we find i from Eqs. (2.2) and substitute it into Eqs. (2.3), we obtain an equality containing functions of
one variable D(t), ϕ(s), and τ(i). It is necessary to separate the variables. We differentiate Eqs. (2.3) with respect
to t and s and find the ratio of the resultant equalities:

t(D′)−1D′′(U − s)U ′(U ′ − νs−1U) + (U − s)2νs−1UU ′′ + tD′(U ′′ + νs−1U ′ − νs−2U)

+ (U − s)U ′[2(U ′)2 + U ′(νs−1U + ν − 1) + νs−1U(s−1U − 2)] = 0.

Differentiating this expression with respect to t, we obtain an equality in which we can separate the variables s

and t under the conditions (tD′)′ �= 0 and U ′ + νs−1U �= 0:

(t(D′)−1D′′)′

(tD′)′
= − U ′′ + νs−1U ′ − νs−2U

(U − s)U ′(U ′ + νs−1U)
= k (k = const). (2.4)

Integration of Eq. (2.4) leads to the following results for D:
(a) D = C−1

0 (n − 1)−1|t|1−n for k = 0 and n �= 1;
(b) D = −k−1 ln |C0 + k(1 − n)−1|t|1−n| for n �= 1 and k �= 0;
(c) D = −k−1 ln |C0 + k ln |t|| for k �= 0 and n = 1, where C0 and n are constant.
In case (a), we have tD′ = (1 − n)D. Equation (2.3) acquires the form

τ ′(i)
[
(1 − n)(i + (ϕ′)2/2 − sϕ′ + ϕ) − ϕ′′(ϕ′ − s)2

]
+ ϕ′′ + νs−1ϕ′ = 0. (2.5)

After differentiation with respect to i, the variables are separated:

i + τ ′(τ ′′)−1 = −(ϕ′)2/2 + sϕ′ − ϕ + (1 − n)−1ϕ′′(ϕ′ − s)2 = A (A = const).

Integrating this equation, we obtain

τ = (γ − 1)−1 ln |C−1(i − A)|, p = f(ρ) = C0ρ
γ + p0, i = A + γC0(γ − 1)−1ργ−1.

Here γ, p0, and C0 are constants of integration.
Substituting the resultant expressions into Eq. (2.5) and setting the coefficient at i to zero, we obtain two

equations, one of them determining the function ϕ by integration. Substituting the same expressions into the second
equation and setting the coefficients at different powers of s to zero, we obtain the solution

U = 2(γ(ν + 1) + 1 − ν)−1s, γ �= 1,

γC0

γ − 1
ργ−1 =

(ν + 1)(γ − 1) + 2
2C0(γ − 1)(ν + 1)

|t|−2(γ−1)(ν+1)/[(γ−1)(ν+1)+2] +
(γ − 1)(ν + 1)s2

2(γν + γ + 1 − ν)

(2.6)

for ν �= 0 and n = [3(γ − 1)(ν + 1) + 2]/[(γ − 1)(ν + 1) + 2] �= 1 and the solution

U = 2(γ + 1)−1s + U0,

γC0

γ − 1
ργ−1 =

γ + 1
2C0(γ − 1)

|t|2(1−γ)/(γ+1) +
γ − 1

(γ + 1)2
s2 − 2U0s

γ + 1
+

U2
0

γ − 1

(2.7)

for ν = 0 (U0 is a constant). The solutions (2.6) and (2.7) have a linear field of velocities and are contained in the
solutions obtained in [6, § 16] in the form of series. In the present work, the final formulas for density are obtained.

In case (b), we have tD′ = (n − 1)k−1(1 − C0 exp (kD)), n �= 1, and k �= 0. Equation (2.3) takes the form

(n − 1)
(
1 − C0 exp (ki) exp [k((ϕ′)2/2 − sϕ′ + ϕ)]

)
/k

− (ϕ′ − s)2ϕ′′ + τ ′(i)−1(ϕ′′ + νs−1ϕ′) = 0. (2.8)

After differentiation with respect to i, the variables are separated:
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(1 − n)C0 exp [k((ϕ′)2/2 − sϕ′ + ϕ)]
ϕ′′ + νs−1ϕ′ =

τ ′′

(τ ′)2
exp (−ki) = −kA (kA = const).

This yields (τ ′)−1 = A exp (ki)+B (B is a constant of integration). Substituting the latter expression into Eq. (2.8)
and setting the coefficient at exp (ki) to zero for A �= 0, we obtain two equalities for the function ϕ(s):

ϕ′′ =
(n − 1)k−1 + Bνs−1ϕ′

(ϕ′ − s)2 − B
,

ln ((n − 1)A−1k−1C0) + k((ϕ′)2/2 − sϕ′ + ϕ)′ = ln ((n − 1)k−1 + νs−1ϕ′(ϕ′ − s)2) − ln ((ϕ′ − s)2 − B).

If A = 0, then (tD′)′ = 0 (this case is considered below).
Differentiating the latter equality with respect to s and introducing the variables W and λ instead of U

and s through the formulas

W = sU−1, λ = (s2(W−1 − 1)2 − B)((n − 1)k−1W + νB)−1,

we obtain the equality

νλ2((n − 2)W + νBk + 1) + λ((ν − 3 + n)W + ν(Bk − 1)) + 2 = 0, (2.9)

which is linear with respect to W , and the equality for the differentials

W
(n − 1

k
W + νB

) dλ

dW
= 2

[
B + λ

(n − 1
k

W + νB
)]( λ

λ − 1
+

1
W − 1

)
− n − 1

k
λW.

Eliminating W from this equation by virtue of Eq. (2.9), we obtain a relation, which is polynomial with respect
to λ. Hence, either λ = λ0 is a constant, or the resultant relation is an identity with respect to λ. For λ = λ0, we
have U = s (i.e., the case considered above). The identity with respect to λ is written as

νBk + (n − 1)
(
ν(n − 2)

ν(νBk + 1)λ2 + ν(Bk − 1)λ + 2
(ν(n − 2)λ + n + ν − 3)2

− 2ν(νBk + 1)λ + ν(Bk − 1)
ν(n − 2)λ + n + ν − 3

)

= 2
(
kB(νλ + 1) − (n − 1)

ν(νBk + 1)λ2 + ν(Bk − 1)λ + 2
ν(n − 2)λ + n + ν − 3

)

×
( 1

λ − 1
− ν(n − 2)λ + n + ν − 3

νλ2(νBk + n − 1) + λ(νBk + n − 3) + 2

)

×
(
λ

2ν(νBk + 1)λ + ν(Bk − 1)
ν(νBk + 1)λ2 + ν(Bk − 1)λ + 2

− ν(n − 2)λ
ν(n − 2)λ + n + ν − 3

− 1
)
.

This equation yields 2ν(n− 2)(n + ν − 3)−1 = Bk(n + 2ν − 3)− 2n− 3ν + 2 for λ = 0 and νBk = 1− n as λ → ∞.
Hence, ν �= 0, n �= 1, and k �= 0.

Thus, the equation n2 + 4 = 0 has no real roots for ν = 1 and has the root n = 1 for ν = 2. A contradiction
arises. Hence, there are no new solutions in case (b).

In case (c), we have tD′ = − exp (kD) and k �= 0. Equation (2.3) acquires the form

− exp (ki) exp [k((ϕ′)2/2 − sϕ′ + ϕ)] + (τ ′)−1(ϕ′′ + νs−1ϕ′) = 0. (2.10)

Differentiating this equation with respect to i, we obtain the equality (τ ′)−1 = A exp (ki)+B, A �= 0. Substituting τ ′

into (2.10) and setting the coefficient at exp (ki) to zero, we obtain

ϕ′′ =
νBs−1ϕ′

(ϕ′ − s)2 − B
,

Aνs−1ϕ′(ϕ′ − s)2

(ϕ′ − s)2 − B
= exp [k((ϕ′)2/2 − sϕ′ + ϕ)].

Differentiating this expression with respect to s, we obtain relations, which become the linear equation for V after
the substitution U = ϕ′ = sV , μ = s2(V − 1)2 − B as

V =
μ(μ − (ν − 2)B)

(νB + 1)μ2 + νB(Bk − 1)μ + 2νB2
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and the differential equation

dμ

2(μ + B)
+

( μ

μ − νB
− V

V − 1

)
d ln V = 0.

This implies the identity with respect to the variable μ:

−1
2

=
( μ + B

μ − νB
+

(μ − (ν − 2)B)(μ + B)
νBkμ2 + Bμ(νBk − 2) + 2νB2

)

×
(2μ − (ν − 2)B

μ − (ν − 2)B
− μ

2(νBk + 1)μ + νB(Bk − 1)
(νBk + 1)μ2 + νB(Bk − 1)μ + 2νB2

)
.

As μ → ∞, we have νB = 0; hence, U = U0, i.e., we obtain a trivial solution corresponding to the state at rest.
The case U ′ + 2s−1U = 0 reduces to the case (tD′)′ = 0.

We still have to consider the case tD′ = ka2
0 (ka2

0 is a constant). It follows that D = a2
0 ln |t|k (k �= 0), and

Eq. (2.3) takes the form

τ ′(i)[a2
0k − (ϕ′ − s)2ϕ′′] + ϕ′′ + νs−1ϕ′ = 0. (2.11)

After separating the variables i and s, by virtue of Eqs. (2.2), we obtain

τ = a−2
0 i + b0, p = f(ρ, S0) = a2

0ρ + p0, i = a2
0 ln (ρ/ρ0).

In the new variables U = s + a0u and s = a0x, Eq. (2.11) reduces to the Abel equation

dx

du
=

x(u2 − 1)
νu − x(u2 − k − ν − 1)

, (2.12)

while the density is determined by the equality

ρ = ρ0|t|k exp
(
− 1

2
u2 −

∫
u dx

)
. (2.13)

Submodel (2.12) for equations of gas dynamics does not seem to be published previously.
For ν = 0, Eq. (2.12) has the integral

x − x0 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−u + 1/u, k = −1,

−u − (β2 + 1) arctan (u/β), k + 1 = −β2,

−u − α2 − 1
2α

ln
∣∣∣u + α

u − α

∣∣∣, k + 1 = α2.

For ν �= 0, Eq. (2.12) has the integral straight line x = 0 and is invariant during the inversion x → −x, u → −u.
The singular point x = 0, u = 0 is a saddle. The saddle separatrices have the tangential lines x = 0 and
(k + ν + 1)x + (ν + 1)a = 0 at the singular point.

If k + ν = 0, there are no other singular points. The integral curves for this case are constructed below.
3. Velocity as an Extra Function. Let the velocity U = U(t, s) be a function of the general form and

the density ρ = ρ(s) and entropy S = S(s) be functions of one invariant variable s = rt−1. It follows from system
(1.1) that the gas motion is isentropic (S = S0):

U = s−νρ−1
(
u(t) +

∫
sν+1ρ′(s) ds

)
, u′ �= 0, i =

∫
ρ−1fρρ

′ ds,

tu′ +
(
u +

∫
sν+1ρ′ ds − sν+1ρ

)
[sρ−1ρ′ − s−νρ−1(νs−1 + ρ−1ρ′)

(
u +

∫
sν+1ρ′ ds

)]
+ sνρi′ = 0.

(3.1)

Differentiating (3.1) with respect to t, we obtain the equality where the variables t and s can be separated:

1
u′

((tu′)′

u′
)′

=
2

sνρ

(ν

s
+

ρ′

ρ

)
= 2k

(k is a constant). Thus, we find tu′ = ku2 + nu + c and sνρ(R0 + ks) = 1, where n, c, and R0 are constants
of integration. Substituting these expressions into (3.1) and setting the coefficients at the powers of the variable

644



u to zero, we obtain the equalities k = 0, ρ = ρ0s
−ν , n = ν (ν = 1, 2), i = i0 − cρ−1

0 s − ν(ν + 1)s2/2, and
U = −νs + ρ−1

0 ν−1(c1t
ν − c), where i0, c1, and ρ0 are constants.

The solution for ν = 1 is

ρ = ρ0s
−1, U = −s + ρ−1

0 (c1t − c), p = p0 + c ln ρ − 2ρ2
0ρ

−1, (3.2)

and the solution for ν = 2 is

ρ = ρ0s
−2, U = −2s + ρ−1

0 (c1t
2 + c)/2, p = p0 + cρ

−1/2
0 ρ1/2 + 3ρ0 ln ρ. (3.3)

For c > 0, the equations of state imply that p > 0 in the domain ρ > ρ1 > 0, where pρ > 0 and pρρ < 0.
For c < 0, the pressure is positive in the domain 0 < ρ1 < ρ < ρ2; pρ > 0 in the interval ρ1 < ρ < ρm < ρ2, where
pρρ < 0.

Thus, the equations of state in (3.2) and (3.3) do not satisfy the properties of the standard gas [7, § 2], but
the solutions with a linear field of velocities are original.

4. Entropy as an Extra Function. Let the entropy S = S(t, s) be a function of the general form, and the
density ρ = ρ(s) and velocity U = U(s) be functions of one invariant variable s. System (1.1) yields the equalities

S = t exp
(
−

∫
(U − s)−1 ds

)
, p = D(t) −

∫
ρ(U − s)U ′ ds,

(U − s) dρ + ρ(dU + νs−1U ds) = 0.

(4.1)

Here S is a function of entropy and D(t) is an arbitrary function. Thus, we obtain the equation of state in the form

p = f(ρ, S) = D(Sα(ρ)) + β(ρ),

where

α(ρ) = exp
(∫

(U − s)−1 ds
)
, β(ρ) = −

∫
ρ(U − s)U ′ ds.

The function U(s) being defined, we can determine the density ρ(s) from Eqs. (4.1) and, hence, the functions
α(ρ) and β(ρ). Thus, there exists an equation of state at which the gas motion proceeds with the velocity U(s).

If α(ρ) and β(ρ) are prescribed, the following relations are valid:

β′ = (V − 1)2s2(νV ρα−1α′ + 1), U = sV,

(V − 1)α−1α′ dρ = s−1 ds = −
(
(ν + 1)V + αρ−1(α′)−1

)−1

dV.
(4.2)

Eliminating the variable s from here, we obtain the differential equation (4.2) and the final relation between the
quantities ρ and V :

V 2(3ν + 1)ρα−2(α′)2 + V
(
νρα′α−1β′′(β′)−1 + 4να−1α′ − νρα−1α′′

− ν(ν − 2)ρα−2(α′)2
)

+ (β′)−1β′′ + 2ρ−1 + (2 − ν)α−1α′ = 0. (4.3)

Relation (4.3) is not an identity with respect to the variable V ; instead, it defines the function V (ρ). If this function
is substituted into Eqs. (4.2), we obtain a differential relation between α and β. Thus, only one function (α or β)
in the equation of state can be chosen arbitrarily. New exact solutions depending on the form of the equation of
state from the family with single-functional arbitrariness are obtained.

5. Gas Motion in the Case of Exact Solutions. Formulas (2.6) define an isentropic flow of a polytropic
gas with the world lines

r = C|t|k, k = 2(γ(ν + 1) + 1 − ν)−1 �= 1, ν = 1, 2,

where γ is the ratio of specific heats p = C0ρ
γ + p0 and C is the Lagrangian coordinate of particles. If 1 < γ < 2,

then 1/2 < k < 1 for ν = 1 and 2/5 < k < 1 for ν = 2. If γ > 1, then k < 1. As t → −0, the particles converge
toward the center with infinite velocities, and the density tends to infinity (Fig. 1). For −∞ < t < 0, a collapse
into a point occurs; for 0 < t < ∞, the particles move away from the center with infinite velocities [6, § 16].
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Fig. 1. Collapse and spreading of particles.

r

t

r

t

r

t

r

t
à b c d

Fig. 2. Four types of motion with plane waves: (a) source with a collapse and a point explosion;
(b) collapse and a point explosion with a sink; (c) source; (d) sink.

Formulas (2.7) define an isentropic flow with plane waves (ν = 0) of a polytropic gas with the world lines

r = C|t|2/(γ+1) + U0
γ + 1
γ − 1

t,

where C is the Lagrangian coordinate of particles. For t = tc, where |tc| = [(C/U0)(γ − 1)/(γ + 1)](γ+1)/(γ−1), the
particle is located in the origin of the coordinate system (r = 0) and has a velocity (dr/dt)|t=tc = U0. Four types
of motion are possible: 1) source with a collapse and a point explosion for C > 0 and U0 > 0 (Fig. 2a); 2) collapse
and a point explosion with a sink for C > 0 and U0 < 0 (Fig. 2b); 3) source for C < 0 and U0 > 0 (Fig. 2c); 4) sink
for C < 0 and U0 < 0 (Fig. 2d).

Let us consider the Abel equation (2.12) with one singular point (0, 0) (saddle) for ν + k = 0. The saddle
separatrix has the following asymptotics:

x ∼ −(ν + 1)u − ν(ν + 1)
ν + 2

u3 + O(u5) as u → −0,

u ∼ −1 +
ν

2x
− ν2

8x2
+

ν2

4x3
+ o(x−3) as x → ∞, u → −1.

Let us calculate the limits characterizing the behavior of the integral curves in the upper half-plane x > 0 (Fig. 3):

dx

du

∣∣∣
u=±1

= 0,
d2x

du2

∣∣∣
u=±1

=
2x

ν
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Fig. 3. Integral curves of the Abel equation with one singular point: u = −1 (1), u = 1 (1′),
and x(u2 − 1) = νu (2).

(hence, there are minimums on the straight lines u = ±1) and

dx

du

∣∣∣
u=0

= −1,
du

dx
= 0,

d2u

dx2
= − 1

x
< 0

[hence, there are maximums on the curve x(u2 − 1) = νu].
For all integral curves, we have

u − 1
u

=
ν

x

(
1 +

ν

2x2
+ O(x−4)

)
> 0 as x → ∞, u → ±1,

hence,

u ∼ ν

2x

(
1 +

ν

2x2

)
±

(
1 +

ν2

8x2

)
.

As the curve with the maximums has the asymptotics u = ±1, all integral curves asymptotically approach this
curve as x → ∞ and u → ±1.

Along all straight lines x = lu, l �= 0, we have

dx

du

∣∣∣
x=lu

=
l(u2 − 1)

ν − l(u2 − 1)
→ −1 as u → ∞.

As u → −∞, the integral curves have the asymptotics x = C − u − νu−1 − Cνu−2/2 + . . . .
For all integral curves of Eq. (2.12) in Fig. 3, the world lines of particles are determined from the equation

dr

dt
= U = a0(x + u), r = a0tx.

Hence, dx/u = dt/t, and the density along the world line is determined by equality (2.13).
As u → −0 (point O in Fig. 3), along the saddle separatrix we have x ∼ −(ν + 1)u, t ∼ C|u|−ν−1, and

r ∼ Ca0(ν + 1)|u|−ν, where C defines the particle. Thus, t → ∞, r → ∞, and dr/dt ∼ −νa0u → 0, and the saddle
corresponds to spreading of particles with zero velocities into vacuum (ρ → 0 at infinity).
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Along the integral curves asymptotically approaching the asymptote u = −1 (Fig. 3), we have

u → −1 + 0, x ∼ ν(u + 1)−1/2, t ∼ C|1 + u−1|ν/2 exp (−ν(u + 1)−1/2) → 0,

r ∼ (1/2)νa0C|u|−1|1 + u−1|−1+ν/2 exp (−ν(u + 1)−1/2) → 0,
dr

dt
∼ νa0(u + 1)−1/2 → ∞.

As t → −0, such a behavior of the solution corresponds to a collapse of particles at the point r = 0 with infinite
velocities, and ρ → ∞.

Along the integral curves asymptotically approaching the asymptote u = 1 (Fig. 3), we have

u → 1 + 0, x ∼ ν(u − 1)−1/2, t ∼ C|1 − u−1|ν/2 exp (ν(u − 1)−1/2) → ∞,

r ∼ (1/2)νa0Cu−1|1 − u−1|−1+ν/2 exp (ν(u − 1)−1/2) → ∞,
dr

dt
∼ a0(u + ν(u − 1)−1/2) → ∞.

Such a behavior of the solution corresponds to spreading of particles with infinite velocities into vacuum (ρ → 0 at
infinity).

Along the integral curve with the asymptote x = C − u (see Fig. 3), we have

u → −∞, x ∼ C − u − νu−1, t ∼ C1|u|−1 exp (ν(u − 1)−1/2) → 0,

r ∼ a0C1|u|−1 exp (νu−2/2)(C − u − νu−1) → a0C1,
dr

dt
∼ a0(C − νu−1) → a0C.

Such a behavior of the solution corresponds to spreading of particles with finite velocities from spheres of radius
a0C1 into a medium with the density distribution ρ = ρ0a

ν
0r−ν at the initial time.

The pattern of the world lines is qualitatively consistent with Fig. 1.
Remark 1. Solutions (3.2) and (3.3) for a gas with equations of state that do not satisfy the properties

of the standard gas define continuous convergence and expansion of the gas with a possible sink and source at the
center, where the density and pressure acquire infinite values. The world line that does not pass through the center
can be considered as a piston.
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